► Lowest Cost & High Productivity

- Excellent Mechanical Properties
- ► Low Weight Structure Material
- ► Base Metal : Pure & Alloy metal

METAL+CNT COMPOSITE

Generals

Features

- Excellent Dispersibility of CNT in Metal Matrix
- Improved Strength by Metal-based Nano-crystalline
- Improved Strength & Toughness by Mechanical Properties of CNT
- Improved Conductivity by Electrochemical Properties of CNT
- Improved Abrasion Resistance by Nano-crystalline & CNT
- Light weight compared with the Existing High-strength Composites
- Low Cost Metal + CNT Composite compared with High Strength Composite
- Various Grade can be Manufactured depending on Application Fields

Type

- Metal+CNT : Al+CNT, Cu+CNT, W+CNT etc.
- Alloy + CNT : AI Alloy + CNT, STS + CNT, W alloy + CNT etc.
- •CNT Contents : ~20 Vol.%

Applications

- Light Weight Structures with High Strength & Toughness : Aerospace, Automobiles, Vessels and Leisure/Sports Apparatuses
- Abrasion-resistant Light Weight Materials : Aerospace, Automobiles, Tools and Machine
- Excellent Thermal and Electric Conductivity
- : Electronics, Computer, Automobiles, Aerospace and Precision Equipment

Characteristics

Comparison of Manufacturing Process ACN Process : Lowest Price & Mass Production

Electrical Conductivity of Metal+CNT

• Cold Spray Coating — As spraying : Cu (Cu+CNT — As heat treatment : Cu (Cu+CNT

1 2 CNT content (vol.%)

Ti Alloy (AL Alloy (AI+CNT (AI

Comparison of Mechanical Properties

	Yield strength (MPa)	Tensile strength (MPa)	Elonga -tion (%)	Hardness (HRB)	Specific strength (MPa)	Electrical conduct. (IACS%)	Wear loss (10 ³ cc)
2024 Al Alloy	324	469	19	70.5	174	12	1.74
7075 Al Alloy	435	505	13	80.5	181	9	2.13
Ti-6Al-4V	880	950	14	260~	198	-	2.45
Pure AI+CNT (CNT 3 vol.%)	440	475	5~10	83.2	176	55	-
Alloy AI+CNT (CNT 3 vol.%)	715	720	4	93.7	265	-	1.16
* Tension test :ASTM F	8						

* Wear test : RPM100, Track Dia. 23mm, Elapsed time 62.3min, Room Temp.

http://www.acntech.co.kr

- ► Uniform Dispersibility & Conductivity
- ► High Conductivity with Low Loading of CNT
- ► Excellent Physical Properties
- ► Maintain the Resin Physical Properties

Comparison of Manufacturing Process

► Extremely Low of Particle Sloughing

POLYMER+CNT COMPOSITE

Generals

Features

Characteristics

CERAMIC+CNT COMPOSITE

- ► Uniform Dispersibility & Conductivity
- ► High Conductivity with Low Loading of CNT
- ► Excellent Physical Properties

Manufacturing Process of Ceramic+CNT Composite

Composite Powder

► Maintain the Ceramic Physical Properties

Generals

Features

- Improved Conductivity by Electrochemical Properties of CNTs
- Improved Strength & Toughness by Mechanical Properties of CNTs
- Improved Abrasion resistance by Appearance Properties of CNTs
- Realization of High Conductivity with the Minimum Addition of CNT
- Maintaining the Properties of the Base Ceramic's Own
- Decreased Particle Sloughing
- Extended Lifetime

Type

- ZrO₂+CNT, Al₂O₃+CNT etc.
- CNT Contents : ~ 10 Vol.%

Applications

- · Ceramic coating materials with high strength and high toughness
- Industrial materials requiring electric conductivity and heat dissipation
- · Ceramics for shock absorption Abrasion-resistant ceramics

Sintered Ceramic + **CNT** Composite

Characteristics

SEM Image of Ceramic+CNT Composite

Raw ceramic powde

Carbon Nanotube (MWCNT)

Ceramic+CNT Composite

Vickers hardness press mark

Prevent Crack propagation

Crack bridging by CNT

Wear loss

Surface Resistance

Fraction coefficient

1.5 CNT (Vol.%)

- ► Uniform Dispersibility & Conductivity
- ► Highly Electric/Thermal Conductivity
- Excellent Dispersibility of CNT
- Highly Photocatalyst Property

Generals

LIQUEFIED CNT

Features

- CNT-used Liquid high conductive paste & ink
- Low cost CNT for expensive Pt & Ag
- Excellent electric conductivity & thermal emission property
- · Environmental-friendly materials with conductivity & photocatalyst
- Various grade can be manufacturing depending on application fields
- · Convenient usage : Spray, coating etc.

Type

- CNT Paste : 10¹~10² Ω/sq.
- CNT lnk : 10¹~10⁴ Ω/sq.

Applications

- ESD, EMI
 - Dye-sensitized solar cell counter electrode
 - Adsorption of harmful gas, Pollution decomposition

DSSC modules with CNT counter electrode

for Liquefied CNT

Dye-sensitized Solar Cell CNT Counter Electrode

Features

- Low cost CNT counter electrode for expensive Pt counter electrodes
- · High photo-electric conversion in low level illumination
- · High efficiency and stability in comparison with Pt DSSC

Property

- Sheet resistance
- : CNT electrode := Pt electrode (Excellent Conductivity)
- · Electrochemical properties
- : CNT electrode > Pt electrode (CV & impedance spectrum)
- CNT Electrode
- : Excellent performance & Simple Process
- → CNT : Low resistance, Excellent electron emission Large surface area, Low cost

Comparison of efficiency & V-oc between Pt and CNT electrode

Applied Carbon Nano Technology Co.

SEM image of CNT electrode

http://www.acntech.co.kr

CARBON NANOTUBE

Generals

Features

- New dreamy material in the 21st century
- Tubular material with hexagonal honeycomb structure
- Remarkable electronic/thermal and mechanical properties
- Mass production and lowest price
- Wide use and various technological applications
- Environmental-friendly materials with conductivity $\boldsymbol{\vartheta}$ strength

Typical Properties of MIWUN I						
	Properties	Value	Remarks			
Electri	cal Resistivity ($ ho \cdot cm$)	0.1	Pure Cu (1.67)			
Therma	al Conductivity (W/m/K)	~2,000	Pure AI (236)			
Elastic Behavior	Young's Modulus (MWCNT)	1.28 TPa				
	Maximum Tensile Strength	~100 GPa	SUS 304 (0.6 Gpa)			

► Mass production and Lowest price

Various technological applications

► High chemical stability

► Excellent mechanical/Electrical/Thermal property

MWCNT

TWONT

Properties and Qualities

Туре	Purity (wt.%)	Diameter (nm)	Length (um)	Remarks
CNT 85, CNT90	85, 90	5~20	~10	Catalyst CVD
CNT97	over 97	5~20	~10	Purified CNT90
Chopped CNT	85, 90, 97	5~20	~1, 1~3	Various Length
TWCNT	85, 97	5~10	~10	Thin Wall CNT

Normal MWCNT

Normal MWCNT

Chapped CNT (1~3 um)

Chapped CNT (${\sim}1$ um)

Applications

- Electron emitter, light source
- Electromagnetic interference (EMI), Electrostatic discharge (ESD)
- Solar cell electrode, Fuel cell electrode
- Rechargeable battery
- Metal/Ceramic/Polymer composite
- CNT paste & ink
- Removal sick house syndrome, adsorption of harmful gas, pollution decomposition

- Chopped CNT, Nano Pt dispersed in oil
- ► Up to engine Power
- Saving the Fuel
- ► Superior thermal behaviors of Oil
- ► Can be used in all kinds of cars

ENGINE OIL ADDITIVE(MISO-N)

Generals

Features

H

- Nano Pt & Chopped CNT are uniformly dispersed in engine oil
- Nano materials are coated in scratched part of engine inner surface
- Nano Pt : Promote perfected combustion, decrease toxic waste gas
- Chopped CNT in Nano size : Improve Lubrication & thermal conductivity
- · High performance engine oil additive
- : Decrease fuel consumption, Improve engine performance, Prevent wearing of friction surface of engine, Less noisy
- Application : Motor, Aircraft, Vessel, Motorcycle, Industrial Engine
- Patents : 3 (Miso-N, Chopped CNT, Nano Pt)

Features

- In common use for Gasoline, Diesel, LPG.
- · After shaking several times, pour Miso-N into
- engine oil in any time, but after engine oil exchange is better.
- With one bottle, no need to change engine oil up to 15,000~20,000 km, but we recommend up to 10,000 km in order to get better effects.

Main Components

- Chopped CNT
 - Excellent electric & thermal
- conductivity
- Self lubricant
- Excellent chemical stability • CNT length control (Patent)

Nano Platinum (Pt) Excellent electric & thermal

- conductivity
- Self lubricant
- · Excellent chemical stability
- CNT length control (Patent)

Sort

- 60ml : Passenger Car, SUV
- 200 ml : Bus, Truck
- 5L : Mass consumption company

Differences of property

Classification					Be (kn	fore n/ Q)	(İ	After km/ ()	Fuel Saving Rate (%)
	Hyundai,	1500cc DOHC ('97)			11	.03	1	2.90	+17.0
	Samsı	ing, 2000	lcc ('01)		13	3.33	1	4.59	+ 9.5
	Hyundai,	2000cc E	OHC ('99	3)	1	1.6		12.8	+10.3
Gasoline	KIA,	800cc (2	2000)		13.23		1	4.99	+13.3
	Daew	00, 1800	cc ('96)		6.	.87		7.74	+12.7
	Hyuno	lai, 2500d	cc ('97)		7.	.96		9.12	+14.6
	Hyund	Hyundai, 2000cc ('99)				.71		9.33	+ 7.2
	KIA, S	UV 2500cc ('04)			10.8		13.6	+25.9	
Dissel	KIA, SUV 2500cc ('05)				11.4		13.5	+18.6	
	Hyundai, 14Ton Truck ('99)				3.	.62		3.79	+ 4.7
	LPG Hyunda		lai, 2000cc ('04)			.94	1	0.84	+8.98
LPG			lai, 2000cc ('05)			9.89		0.88	+9.95
0000									
City Bus in Seoul		2008					2009		
		April	IVlay	Ju	ne	Apr	I	IVlay	June
Normal Bus (3 avg.)		3.08 3.02		28	85	2.92	2	2.83	2.57
		0.00	0.02	2.0	55	(-4.91	%)	(-6.14%) (-9.75%)
Test Bus (5 avg.)		Before (km/ ℓ)				After (k		After (km,	′ Q)
		2 OF	2.95	2.	7/	3.15	5	3.07	3.02
		2.85		Ζ.	/4	(+10.9)	6%)	(+4.21%)) (+10.06%)

Test Result in the Army

Classification	Saving fuel (%)	RPM at 80km/h		Power	Noisy	Interval time to normal engine Temperature		
K-131 (Jeep, Gasoline)	+25.9	2,800 (300 ↓)		Up	Reduce	Faster		
K-311 (5/4T, Dissel)	+19.2	-19.2 -		Up	Reduce	Faster		
K-511 (2.5T, Dissel)	+26.3	.3 2,300 (200 ↓)		Up	Reduce	Faster		
Classification HC (ppm		pm)	CO	(%)	NOx (ppm) CO2 (%)		
Before	50		0.0		212	15.0		
After	14		0.0		218	15.0		
Limited Value	190		1.2		1,440	-		

Differences of property

Classification	Miso-N oil additive	Other products
Main	Carbon nanotube(CNT),	PTFE, Metal Powder,Mo
Materials	Nano Platinum (Nano Pt)	compound, Graphite, Ceramic
		powder etc.
Function	Recover engine as a optimal	
	situation & help perfect	Improve the quality of engine oil
	combustion	
Durability	No risk of oxidation and burning	In harsh condition, there is a
	in any condition of temperature	risk of oxidation in main materials
		(severe negative effects in engine)
Applying	There is no limit, can be used in	There are different applying
	all kinds of cars and any time,	method according to the kinds of
	it can be applied regardless	cars, fuels, and it can not be
	the time of oil change	applied in any time
Continuance	One time using, the effect is	In the beginning there is certain
	lasted till 10,000~20,000 km	effects but in some time,
		the effects are disanneared

