Lowest Cost & High Productivity

- Excellent Mechanical Properties
- ► Low Weight Structure Material
- ► Base Metal : Pure & Alloy metal

Metal+CNT Composite(A-Metal)

Generals

Features

- · Excellent Dispersibility of CNT in Metal Matrix
- Improved Strength by Metal-based Nano-crystalline
- · Improved Strength & Toughness by Mechanical Properties of CNT
- · Improved Conductivity by Electrochemical Properties of CNT
- Improved Abrasion Resistance by Nano-crystalline & CNT
- · Light weight compared with the Existing High-strength Composites
- Low Cost Metal-CNT Composite compared with High Strength Composite
- Various Grade can be Manufactured depending on Application Fields

Type

- Metal+CNT : Al+CNT, Cu+CNT, Fe+CNT, Zn+CNT etc.
- Alloy+CNT : AI Alloy+CNT, STS+CNT, SKD+CNT etc.
- CNT Contents : ~10 wt.%

A-Metal	Products	Features			
	A-Al6 (600 MPa)	Shape			
AI+CNT	A-AI5 (500 MPa)	- Powder : 5~40 ur			
	A-AI4 (400 MPa)	- Bulk : D50~100mm			
Cu+CNT	A–Cu (CNT 1~10 wt.%)	H5UMM			
Fe+CNT	A–Fe (CNT 1~10 wt.%)	Strength, Toughness,			
STS+CNT	A-STS (CNT 1 \sim 10 wt.%)	Wear resistance,			
Others	Zn, SKD, Ni, Alloy etc.	Conductivity etc.			

Applications

- Light Weight Structures with High Strength & Toughness: Aerospace, Automobiles, Vessels and Leisure/Sports Apparatuses
- Wear resistance-Light Weight Materials : Aerospace, Automobiles, Tools and Machine
- Excellent Thermal and Electric Conductivity : Electronics, Computer, Automobiles, Aerospace and Precision Equipment

500

Characteristics

Short insertion

Middle insertion (for Conductivity) (for Coating agent) (for High strength

Excellent Mechanical Properties

Fe+CNT (Density 6.6)

Strain				A1202 3v	4- CNT A1202 ol%	4 A17075	11-6AI-4V
	Yield Strength (MPa)	Tensile strength (MPa)	Elonga –tion (%)	Hard ness (HRB)	Specific strength (MPa)	Electrical conduct. (IACS%)	Wear loss (10–3 cc)
2024 Al Alloy	324	469	19	70.5	174	12	1.74
7075 Al Alloy	435	505	13	80.5	181	9	2.13
Ti-6Al-4V	880	950	14	$260\sim$	198	_	2.45
Pure AI+CNT	440	475	5~10	83.2	176	55	_
2024 AI+CNT	715	720	4	93.7	265	_	1.16

CNT

Metal

Fully insertion

Polymer+CNT Composite(A–Pol)

Generals

Features

- Improved Conductivity by Electrochemical Properties of CNT
- Improved Strength & Toughness by Mechanical Properties of CNT
- Uniform Dispersibility & Conductivity by using Metal-CNT Composite
 Insertion of CNT into Metal particle : Control Length of CNT in Metal
- Prevent Segregation of CNT in Extrusion
- Role : CNT (Conductivity), Metal (Dispersibility & Conductivity)
- · Realization of High Conductivity with the Minimum Addition of CNT
- · Maintaining the Properties of the Base Material's own
- Decreased Particle Sloughing
- Extended Lifetime

Type

	Туре	Products	Features
	PC+CNT	A-PC-20	
Colid	PP+CNT	A-PP-20	• Shape : M/B
20110	PA66+CNT	A-PA66-20	• CNT:~20 wt.%
	Others	Order base	
	Epoxy+CNT	А-Ероху-З	
Paste	Urethane+CNT	A-Urethane-3	Snape · Paste ONT · 0/3 wt %
	Others	Order base	

Characteristics

Maintain the Resin Physical Properties
 Extremely Low of Particle Sloughing

Uniform Dispersibility & Conductivity

Excellent Physical Properties

► High Conductivity with Low Loading of CNT

Applications

- Shielding Material (ESD & EMI) : Mobile, Cloth, Computer, Glove, Shoes, Matt, Tile, Tray, Tape, Box, Bag, Film etc.
- Engineering Plastic, Heat sink : Aircraft, Automobile, Aerospace, Electronic, Medical, Vessel Sports equipment, etc.

www.acntech.co.kr

Ceramic+CNT Composite(A-Ceram)

Uniform Dispersibility & Conductivity
 High Conductivity with Low Loading of CNT

Excellent Physical Properties

Manufacturing Process of Ceramic+CNT Composite

► Maintain the Ceramic Physical Properties

Generals

Features

- Improved Conductivity by Electrochemical Properties of CNTs
- Improved Strength & Toughness by Mechanical Properties of CNTs
- Improved Abrasion resistance by Appearance Properties of CNTs
- Realization of High Conductivity with the Minimum Addition of CNT
- Maintaining the Properties of the Base Ceramic's Own
- Decreased Particle Sloughing
- Extended Lifetime

Sintered Ceramic+ CNT Composite

∎ Туре

Туре	Features	
Al ₂ O ₃ +CNT	A-OAI (CNT 1~10 wt.%)	
ZrO2+CNT	A–OZr (CNT 1~10 wt.%)	• Shape : Powder
TiO2+CNT	A–OTi (CNT 1~10 wt.%)	• Usage : Sintering,
SiO2+CNT	A–OSi (CNT 1~10 wt.%)	Coating
Others	Order base	

Applications

CNT Powder

- Ceramic coating materials with high strength and high toughness
- · Industrial materials requiring electric and thermal conductivity
- Ceramics for shock absorption
- Wear resistant ceramics

Characteristics

SEM Image

Raw ceramic powder

Carbon Nanotube (MWCNT)

Ceramic+CNT Composite

Crack Propagation

Behavior

Prevent crack propagation

Crack bridging by CNT

Excellent Mechanical Properties

Liquefied CNT(A-Sol)

Uniform Dispersibility & Conductivity Highly Electric/Thermal Conductivity Excellent Dispersibility of CNT Highly Photocatalyst Property

Generals

Features

- · CNT-used Liquid high conductive paste & ink
- · Low cost for expensive conductive materials
- · Excellent electric and thermal conductivity
- Environmental-friendly materials · Various grade and solutions
- Usage : Spraying, Printing, Dr.Blade etc.

High dispersibility CNT

CNT Paste

CNT Ink

Type

Items	Туре	Products	Features	
Ink	MWCNT	A-Sol-D3 (DIW) A-Sol-A2 (Alcohol)	• Viscosity : ~500 cP	Applications
	SWCNT	A-Sol-D01 (DIW) A-Sol-A01 (Alcohol)	• Resistivity : $10_1 \sim 10_4 \Omega/sq$. • Transparency : ~ 85%	• Excellent electric conductivity : ESD, EMI, Heating element
	Graphene	A-Sol-D3-G (DIW) A-Sol-A2-G (Alcohol)	coating,	High thermal conductivity : Heat dissipation, Heat insulation
Paste	MWCNT	A-Sol-D10 (DIW) A-Sol-A10 (Alcohol)	 Viscosity : ~35,000 cP Resistivity : 101~104 Ω/sq. 	 Dye-sensitized solar cell counter electrode Superior mechanical property of coating layer
	Graphene	A-Sol-D10-G (DIW) A-Sol-A10-G (Alcohol)	Usage : Screen printing, Dr. Blade	 Adsorption of harmful gas, Pollution decomposition

Property

Transparency Electrode (SWCNT Ink)

Conductive Coating(MWCNT Ink)

Glass

MWCNT Paste

DSSC Module(CNT counter electrode)

Pt Electrode

Comparison of efficiency(Pt:CNT)

0 day 1 day 2 day 3 day 4 day 5 day

Applied Carbon Nano Technology CO.

3.947 Ω/sq

1.021 kΩ/sq

DIW #2 DIW #3

22.38 kΩ/sq

www.acntech.co.kr

Carbon Nanotube(A-Tube)

Generals

Features

- New dreamy material in the 21st century
- Tubular material with hexagonal honeycomb structure
- Excellent electronic/thermal/mechanical properties
- Mass production and lowest price
- Wide use and various technological applications
- · Environmental-friendly materials

I Typical Properties of MWCNT

	Value	
Electrical	0.1	
Thermal (~2,000	
Floatia Dabayiar	Young's Modulus(MWNT)	1.28 TPa
Elastic Benavior	Tensile strength	\sim 100 GPa

Properties and Qualities

Products

Туре	Products	Features
MWCNT	A–Tube–M85 A–Tube–M90 A–Tube–M95 A–Tube–M97–P	 − CCVD − Dia. : 5~20 nm − Length : ~10 um − Purity : 85~97 wt.%
MWCNT (Chopped)	A-Tube-90-C1 A-Tube-90-C3	 − Dia. : 5~20 nm − Length : ~1, 1~3 um − Purity : 90 wt.%
TWCNT (Thin wall)	A-Tube-T95	 Dia. : 5∼10 nm Length : ~10 um Purity : 95 wt,%
Others	Graphene, CNF etc.	

Before

Dispersion of Graphene

Mass production and Lowest price

- ► Excellent mechanical/Electrical/ Thermal property
- High chemical stability
- Various technological applications

Applications

- · Electromagnetic interference, Electrostatic discharge
- · Solar cell electrode, Fuel cell electrode
- Rechargeable battery
- Metal/Ceramic/Polymer composite
- CNT paste & ink
- · Removal sick house syndrome, adsorption of harmful gas, pollution decomposition

Graphene

Graphite Nanofiber

Carbon Nanotube

Shape

Normal MWCNT

Chopped CNT

MWCNT

TWCNT

Engine Oil Additive"EnginAid"

Generals

Features

- Nano Pt & Chopped CNT are uniformly dispersed in engine oil
- · Nano materials are coated in scratched part of engine inner surface
- Nano Pt : Promote perfected combustion, decrease toxic waste gas
- Chopped CNT in Nano size : Improve Lubrication & thermal conductivity
 High performance engine oil additive :
- Decrease fuel consumption, Improve engine performance, Prevent wearing of friction surface of engine, Less noisy
- Application : Motor, Aircraft, Vessel, Motorcycle, Industrial Engine
- Patents: 3 (Miso-N, Chopped CNT, Nano Pt)

How to Use

- In common use for Gasoline, Diesel, LPG.
- After shaking several times, pour Miso-N into engine oil in any time, but after engine oil exchange is better.

Main Components

Classification	EnginAid	Other products
Main Materials	Carbon nanotube(CNT), Nano Platinum (Nano Pt)	PTFE, Metal Powder, Mo compound, Graphite, Ceramic powder etc.
Function	Recover engine as a optimal situation & help perfect combustion	Improve the quality of engine oil
Durability	No risk of oxidation and burning in any condition of temperature	In harsh condition, there is a risk of oxidation in main materials (severe negative effects in engine)
Applying	There is no limit, can be used in all kinds of cars and any time, it can be applied regardless the time of oil change	There are different applying method according to the kinds of cars, fuels, and it can not be applied in any time
Continuance	One time using, the effect is lasted till 10,000~20,000 km	In the beginning there is certain effects but in some time, the effects are disappeared

I Main Components

Chopped CNT

- Excellent electric & thermal conductivity
- Self lubricant
- Excellent chemical stability
- CNT length control (Patent)

Nano Platinum(Pt)

- Excellent Catalyst
- Evenness of the size
- Excellent dispersibility (Patent)

Sort

- 100 ml : Passenger Car, SUV
- 500 ml : Bus, Truck
- 4 L : Mass consumption company

Main Components

	Classification	Before (km/ ℓ)	After (km/ ℓ)	Fuel Saving Rate(%)
	Hyundai, 1500cc DOHC ('97)	11.03	12,90	+17.0
	Samsung, 2000cc ('01)	13,33	14,59	+9.5
~	Hyundai, 2000cc DOHC ('99)	11.6	12.8	+10.3
Gaso-	KIA, 800cc (2000)	13,23	14,99	+13.3
1110	Daewoo, 1800cc ('96)	6.87	7.74	+12,7
	Hyundai, 2500cc ('97)	7.96	9,12	+14.6
	Hyundai, 2000cc ('99)	8.71	9.33	+7.2
	KIA, SUV 2500cc ('04)	10.8	13.6	+25.9
Diesel	KIA, SUV 2500cc ('05)	11.4	13.5	+18.6
	Hyundai, 14Ton Truck ('99)	3.62	3.79	+4.7
	Hyundai, 2000cc ('04)	9.94	10.84	+8.98
LPG	Hyundai, 2000cc ('05)	9.89	10.88	+9.95

I Main Components

Classification	Saving the fuel(%)	RPM at 80km/h	Power	Noisy	Interval time to normal engine Temperature
K–131 (Jeep, Gasoline)	+25.9	2,800 (300↓)	Up	Reduce	Faster
K-311 (5/4T, Diesel)	+19.2	-	Up	Reduce	Faster
K–511 (2.5T, Diesel)	+26.3	2,300 (200 ↓)	Up	Reduce	Faster

I Main Components

Classification	HC(ppm)	CO(%)	NOx(ppm)	CO2(%)
Before	50	0	212	15
After	14	0	218	15
Limited Value	190	1.2	1440	_

► Chopped CNT, Nano Pt dispersed in oil

- ► Up to engine Power
- ► Saving the Fuel
- Superior thermal behaviors of Oil
- ► Can be used in all kinds of cars