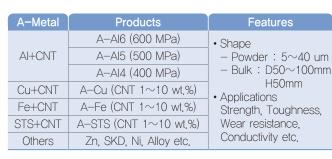
탄소나노복합재(A-Metal)

- ▶낮은 제조원가 및 높은 생산성
- ▶우수한 기계적 전기적 특성
- ▶ 경량 구조용 고강도 복합재
- ▶다양한 종류의 소재 사용 : 금속. 합금

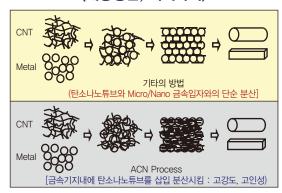

소 개

▮특징

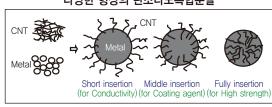
- 금속기지내에서의 탄소나노튜브 분산성 우수
- 금속 결정립의 나노화로 인한 강도 향상
- 탄소나노튜브의 우수한 기계적 특성에 의한 강도 및 인성 향상
- 탄소나노튜브의 우수한 전기적 특성에 의한 열 및 전기전도도 향상
- 나노결정립과 탄소나노튜브에 의한 내마모성 향상
- 기존의 고강도 복합재 대비 경량화 효과
- •고강도 복합소재 대비 저렴한 가격
- 수요자의 요구에 맞춤형의 다양한 종류의 금속-탄소나노복합재 제조

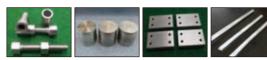
▮종류

- 금속+탄소나노튜브: Al+CNT, Cu+CNT, Fe+CNT, Zn+CNT, Ni+CNT 등
- 합금+탄소나노튜브: Al alloy+CNT, STS+CNT, SKD+CNT 등
- 탄소나노튜브 함량: ~10 wt,%

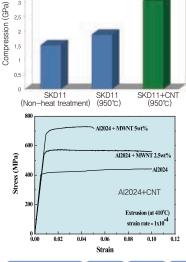


▮ 응용분야

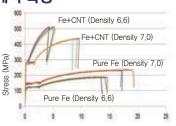

- 고강도 고인성의 경량 구조용 소재: 우주항공, 자동차, 열차, 선박, 레저, 스포츠, 정밀기기, 의료용 기기 등
- 내마모 경량구조용 소재 : 우주항공, 자동차, 열차, 산업용 기계, 공구 등
- 우수한 열 및 전기전도도: 전기전자, 컴퓨터, 자동차, 우주항공, 산업용 기계, 절삭공구 등

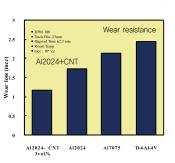

성 특

금속계 탄소나노복합재 제조공정 비교 (대량생산. 최저가격)



다양한 형상의 탄소나노복합분말




우수한 기계적 특성

SKD11+CNT

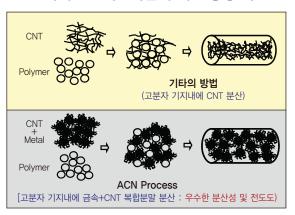
2.5

	Yield Strength (MPa)	Tensile strength (MPa)	Elonga -tion (%)	Hard ness (HRB)		Electrical conduct. (IACS%)	Wear loss (10-3 cc)
2024 Al Alloy	324	469	19	70.5	174	12	1.74
7075 Al Alloy	435	505	13	80.5	181	9	2.13
Ti-6Al-4V	880	950	14	260~	198	_	2.45
Pure Al+CNT	440	475	5~10	83.2	176	55	_
2024 AI+CNT	715	720	4	93.7	265	_	1.16

고분자계 탄소나노복합재(A-Pol)

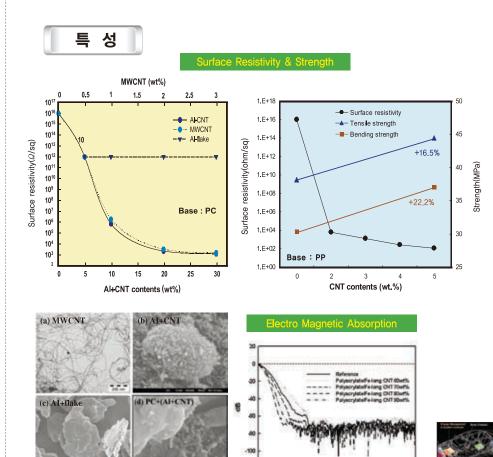
- ▶균일한 분산성 및 전도도
- ▶소량의 CNT로 우수한 전도성 구현
- ▶우수한 물리화학적 특성
- ▶고분자 고유의 특성 유지
- ▶입자 박리 최소화

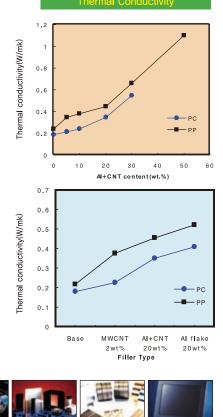
소 개


▮특징

- 탄소나노튜브의 전기화학적 특성에 의한 전도도 향상
- 탄소나노튜브의 기계적 특성에 의한 강도 및 인성 향상
- 금속+CNT 복합분말 사용에 따른 균일한 분산성 및 전도도 구현
- 금속에 삽입되는 CNT의 길이 제어: 분산성 및 전도성 좌우
- 사출 성형품의 표면과 내부에서의 CNT의 편석 방지
- 역할: CNT (전도도), 금속 (분산성 및 전도도)
- 소량의 CNT 첨가로 우수한 전도도 구현
- 고분자 고유의 특성 유지
- 성형품 표면에서의 전도성 입자 박리 최소화
- 수명 연장

▮종류


	Туре	Products	Features	
	PC+CNT	A-PC-20		
Solid	PP+CNT	A-PP-20	Shape: M/B	
Solid	PA66+CNT	A-PA66-20	• CNT : ~20 wt,%	
	Others	Order base		
	Epoxy+CNT	А-Ероху-3	01	
Paste	Urethane+CNT	A-Urethane-3	Shape: PasteCNT: ~3 wt,%	
	Others	Order base	- OINT . 133 WI, /0	


▮고분자계 탄소나노복합재 제조 공정 비교

▮응용분야

- 정전기 및 전자파 차폐재 (ESD & EMI) : 휴대기기, 의류, 컴퓨터, 장갑, 신발, 매트, 타일, 트레이, 테이프, 박스, 가방, 코팅지, 필름 등.
- 엔지니어링플라스틱, 열방산재 : 우주항공, 자동차, 전기전자, 의료용, 선박, 레저, 스포츠 등

0.04GHz

Frequency (GHz)

세라믹계 탄소나노복합재(A-Ceram)

- ▶균일한 분산성 및 전도도
- ▶소량의 CNT로 우수한 전도성 구현
- ▶우수한 물리화학적 특성
- ▶세라믹 고유의 특성 유지

소 개

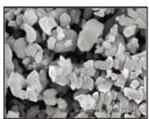
▮특징

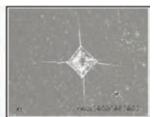

- 탄소나노튜브의 전기화학적 특성에 의한 전기전도도 부여
- 탄소나노튜브의 기계적 특성에 의한 강도 및 인성 향상
- 내마모성 및 내열성 부여
- •소량의 CNT 첨가로 우수한 전도도 구현
- 세라믹 고유의 특성 유지
- •성형품 표면에서의 전도성 입자 박리 최소화
- 성형품 수명 연장

▮종류

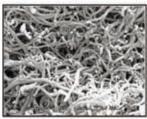
Туре	Products	Features
Al ₂ O ₃ +CNT	A-OAI (CNT 1 \sim 10 wt.%)	
ZrO ₂ +CNT	A-OZr (CNT 1~10 wt.%)	• Shape: Powder
TiO ₂ +CNT	A-OTi (CNT 1~10 wt.%)	Usage : Sintering,
SiO ₂ +CNT	A-OSi (CNT 1~10 wt,%)	Coating
Others	Order base	

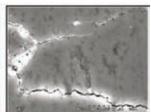
세라믹계 탄소나노복합재 제조 공정

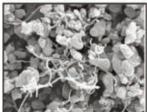

▮ 응용분야


- 고강도 고인성 세라믹 코팅재
- 내열성 및 전기전도성이 요구되는 산업용 소재
- 내충격 내마모성 세라믹 소재

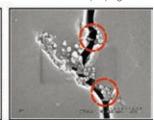
성


성상(SEM)

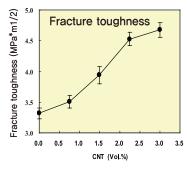

Ceramic+CNT composite Ceramic+CNT composite 균열 전파 거동

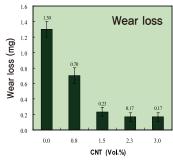


Vickers hardness

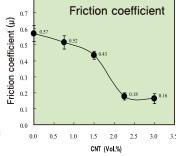


Prevent crack propagation

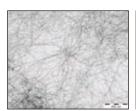


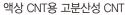

Ceramic+CNT Composite




Crack bridging by CNT

우수한 기계적 특성


액상 탄소나노튜브(A-Sol)


- ▶CNT의 균일한 분산성
- ▶우수한 전기전도도 및 열전도도
- ▶사용의 용이성 및 다기능성
- ▶우수한 광촉매 특성

소 개

▮특징

- CNT를 액상에 분산시킨 페이스트 및 잉크
- •고가의 백금 및 은 대체 가능
- 우수한 전기전도성 및 열 방산 특성
- 균일한 발열성
- 사용의 용이성 및 다기능성
- 환경 친화적인 소재 사용
- 응용 분야별 맞춤형 액상 CNT 제조 가능

CNT Paste

CNT Ink

▮종류

Item	s Type	Products	Features		
	MWCNT	A-Sol-D3 (DIW) A-Sol-A2 (Alcohol)	• Viscosity: ~500 cP		
Ink	SWCNT	A-Sol-D01 (DIW) A-Sol-A01 (Alcohol)	 Resistivity: 10₁~10₄ Ω/sq. Transparency: ~ 85% Usage: Spray/Roll/Spin coating, 		
	Graphene	A-Sol-D3-G (DIW) A-Sol-A2-G (Alcohol)			
Doct	MWCNT	A-Sol-D10 (DIW) A-Sol-A10 (Alcohol)	• Viscosity : \sim 35,000 cP • Resistivity : $10_1 \sim 10_4 \ \Omega/\text{sq}$.		
Paste -	Graphene	A-Sol-D10-G (DIW) A-Sol-A10-G (Alcohol)	Usage: Screen printing, Dr. Blade		

▮응용분야

- 우수한 전기전도성:
- 정전기 방지 및 전자파 차폐재, 발열체, 김서림방지 등
- 태양전지의 전극재: 염료감응 태양전지의 상대전극, 연결전극 등
- 우수한 열전도성 : 방열소재, 단열소재 등
- 기타 :

유해가스 흡착, 광촉매 특성, RFID, 전자종이, 전자 Tag 등

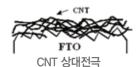
성

Glass

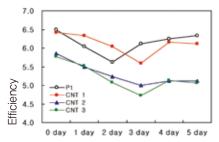
투명전극 (SWCNT Ink)

전도성 코팅 (MWCNT Ink)

MWCNT Paste



CNT 염료감응태양전지 모듈 (한국전기연구원-ACN)



CNT 코팅층의 구조

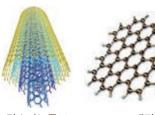
Comparison of efficiency(Pt:CNT)

탄소나노튜브(A-Tube)

- ▶대량생산 및 저렴한 가격
- ▶우수한 기계적/전기적/열적 특성
- ▶우수한 화학적 안정성
- ▶다기능성 소재: 폭넓은 적용분야

소 개

▮특 징


- 21세기 꿈의 신소재
- 육각벌집구조의 중공형 형상
- 탁월한 기계적/전기적/열적 특성
- 대량생산에 의한 저렴한 가격
- 폭넓은 용도 및 다양한 응용 기술
- 전도도와 강도가 우수한 환경친화적인 소재
- 다기능성: 기계적/전기적/열적 특성 동시 구현

▮ 물리화학적 특성

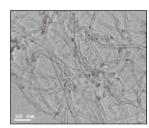
	Value	
Electrical	0.1	
Thermal (~2,000	
Floatic Dahavier	Young's Modulus(MWNT)	1,28 TPa
Elastic Behavior	Tensile strength	\sim 100 GPa

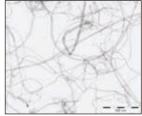
▮ 응용 분야

- 정전기 및 전자파 차폐
- 염료감응 태양전지 상대전극재
- 연료전지 전극재, 이차전지 음극재
- 금속+CNT, 세라믹+CNT, 고분자+CNT 복합재
- 액상 CNT: CNT paste, CNT ink
- 기능성 CNT: 광촉매, 고분산성, 촉매특성
- 유해가스 흡착, 오염물질 분해

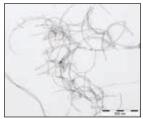
탄소나노튜브 (Carbon Nanotube)

그래핀 (Graphene)

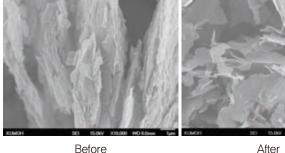

탄소나노섬유 (Graphite Nanofiber)


종류 및 형상

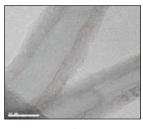
▮종류

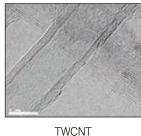

Type	Products	Features
MWCNT	A-Tube-M85 A-Tube-M90 A-Tube-M95 A-Tube-M97-P	 CCVD Dia, : 5~20 nm Length : ~10 um Purity : 85~97 wt,%
MWCNT (Chopped)	A-Tube-90-C1 A-Tube-90-C3	- Dia, : $5\sim$ 20 nm - Length : \sim 1, 1 \sim 3 um - Purity : 90 wt,%
TWCNT (Thin wall)	A-Tube-T95	– Dia, : 5 \sim 10 nm – Length : \sim 10 um – Purity : 95 wt,%
Others	Graphene, CNF etc.	

▋형상



Normal MWCNT



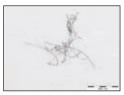

Chopped CNT

Graphene 분산

MWCNT

엔진성능개선제(EnginAid)

- ▶탄소나노튜브, 나노백금 분산첨가
- ▶엔진 출력 증강. 연료비 절감
- ▶우수한 화학적 안정성 및 내열성
- ▶휘발유, 경유, LPG <u>적용</u>


소 개

▮특 징

- 새로운 개념의 엔진성능 개선제 : 연료절감 및 엔진출력 향상, 매연감소 등
 - · 나노백금과 탄소나노튜브를 고도의 분산기술을 활용하여 엔진오일에 분산
 - · 엔진내부의 손상된 금속표면을 나노입자로 코팅함으로써 <mark>엔진효율 향상</mark>
 - · 엔진내부 금속표면의 마모 방지 및 마찰에 의한 과부하/소음/진동 감소
- 나노백금 : 완전연소 및 매연감소 효과 연소 촉매작용 강화, 완벽한 코팅에 의한 압력 누설 및 오일유입 방지
- 나노길이로 가공한 탄소나노튜브 : 윤활성 및 내열성 향상 윤할 기능 극대화, 화학적 안정성, 우수한 열전도성(엔진 내부의 발생열 해소)
- 나노사이즈의 나노백금과 탄소나노튜브를 엔진오일에 균일 분산 엔진오일의 고유기능 유지 및 오일필터의 막힘 현상 해소
- 적용 분야: 자동차, 항공기, 선박, 오토바이, 산업용 엔진

▮제조원

- 제조원 : ㈜어플라이드카본나노
- 특허 3건: 엔진성능개선제 (10-0948361), Chopped CNT, Nano Pt
- 2억원 생산물 배상 책임보험가입

Chopped CNT

▮종류

• 100 ml : 승용차, SUV, 소형승합차

• 200 ml : 버스, 트럭 • 5 L : 대량 소비업체

▮사용법

- 휘발유, LPG, 디젤엔진 공용사용
- 1회 투입으로 20,000 km 이상 효과 지속
- 첨가주기를 짧게 하면 더욱 효과적임

특 성

▮기존 제품과의 비교

구분	EnginAid	기존 엔진오일 첨가제
주성분	탄소나노튜브 (Chopped CNT), 나노백금 (Nano Pt)	몰리브덴 화합물, 합성탄화수소, 고분자 물질(PTFE), 금속분말
기능성	엔진성능을 최상 상태로 복원시킴	단순히 엔진오일의 성능을 향상시킴
내구성	온도에 제약없이 산화 및 연소 되지 않고 코팅막이 오래 지속됨	가혹한 운전조건하에서는 산화되어 윤 활막의 기능을 상실하게 됨.
적용성	• 신차, 중고차에 무관하게 사용 • 경유, 휘발유, LPG 모두 사용 • 오일교환시기와 무관하게 사용	• 신차/중고차, 휘발유/LPG/경유차에 따라 다른 제품 사용 • 오일교환시기에 사용
지속성	1회주입으로 20,000 km 이상 사용	엔진오일 교체시마다 주입

▋경제적 효과

차량 종류	주행거리	절	감액 (원/년	<u>키</u>)	EnginAid	절감효과
	(km/년)	연료비	엔진오일	합계	구입비	(원/년)
소형승용차(휘발유)	24,000	525,668	84,000	609,668	60,000	549,668
중형 SUV (경유)	36,000	943,878	288,000	1,231,878	90,000	1,141,878
14톤 화물트럭(경유)	72,000	1,695,068	360,000	2,055,068	144,000	1,911,068

▮ 연비향상 효과

	구분	주입 전 ` (km/ℓ)	주입 후 ` (km/ℓ)	연비 향상 (%)
	H사 1500cc DOHC ('97)	11.03	12,90	+17.0
-1	S사 2000cc ('01)	13,33	14.59	+9.5
휘바	H사 2000cc DOHC ('99)	11.6	12.8	+10.3
발유	KA+ 800cc (2000)	13.23	14.99	+13.3
	D사 1800cc ('96)	6.87	7.74	+12,7
	H사 2500cc ('97)	7.96	9.12	+14.6
경 유	K사 4륜구동 2500cc ('04)	10.8	13.6	+25.9
유	K사 4륜구동 2500cc ('05)	11.4	13.5	+18.6
I PG -	H사 2000cc ('04)	9.94	10.84	+8.98
LPG	H사 2000cc ('05)	9,89	10,88	+9.95

서울시	연도별 연비 (km/ l)							
시내버스	'08.4	'08.5	'08.6	'09.4	'09.5	'09.6		
일반 버스 (3대 평균)	3.08	3,02	2,85	2,92 (-4.91%)	2.83 (-6.14%)	2.57 (-9.75%)		
EnginAid	7	-입전 연	4		주입후 연비			
주입버스 (5대 평균)	2,85	2,95	2.74	3,15 (+10,96%)	3.07 (+4.21%)	3.02 (+10.06%)		

Dynamo Test	출력 (마력)	HC (ppm)	비고
주입 전	95.6	89	Dynamo Test (SUZUKI GSX1400)
주입 후	99.1 (▲3.6%)	57 (▼35%)	Hissan Co. (Japan)

▮성능시험 결과

군용차량	연비향상 (%)	80km/h 도달RPM	엔진 출력	소음	엔진 정상온도 도달시간
K-131(지프, 경유)	+25.9	2800(300감소)	향상	감소	단축
K-311(5/4톤, 경유)	+19.2	-	향상	감소	단축
K-511(2.5톤, 경유)	+26.3	2300(200감소)	향상	감소	단축

